Remix.run Logo
daxfohl 14 hours ago

I worry about the "brain atrophy" part, as I've felt this too. And not just atrophy, but even moreso I think it's evolving into "complacency".

Like there have been multiple times now where I wanted the code to look a certain way, but it kept pulling back to the way it wanted to do things. Like if I had stated certain design goals recently it would adhere to them, but after a few iterations it would forget again and go back to its original approach, or mix the two, or whatever. Eventually it was easier just to quit fighting it and let it do things the way it wanted.

What I've seen is that after the initial dopamine rush of being able to do things that would have taken much longer manually, a few iterations of this kind of interaction has slowly led to a disillusionment of the whole project, as AI keeps pushing it in a direction I didn't want.

I think this is especially true if you're trying to experiment with new approaches to things. LLMs are, by definition, biased by what was in their training data. You can shock them out of it momentarily, whish is awesome for a few rounds, but over time the gravitational pull of what's already in their latent space becomes inescapable. (I picture it as working like a giant Sierpinski triangle).

I want to say the end result is very akin to doom scrolling. Doom tabbing? It's like, yeah I could be more creative with just a tad more effort, but the AI is already running and the bar to seeing what the AI will do next is so low, so....

striking 11 hours ago | parent | next [-]

It's not just brain atrophy, I think. I think part of it is that we're actively making a tradeoff to focus on learning how to use the model rather than learning how to use our own brains and work with each other.

This would be fine if not for one thing: the meta-skill of learning to use the LLM depreciates too. Today's LLM is gonna go away someday, the way you have to use it will change. You will be on a forever treadmill, always learning the vagaries of using the new shiny model (and paying for the privilege!)

I'm not going to make myself dependent, let myself atrophy, run on a treadmill forever, for something I happen to rent and can't keep. If I wanted a cheap high that I didn't mind being dependent on, there's more fun ones out there.

raducu an hour ago | parent | next [-]

> let myself atrophy, run on a treadmill forever, for something

You're lucky to afford the luxury not to atrophy.

It's been almost 4 years since my last software job interview and I know the drills about preparing for one.

Long before LLMs my skills naturally atrophy in my day job.

I remember the good old days of J2ME of writing everything from scratch. Or writing some graph editor for universiry, or some speculative, huffman coding algorithm.

That kept me sharp.

But today I feel like I'm living in that netflix series about people being in Hell and the Devil tricking them they're in Heaven and tormenting them: how on planet Earth do I keep sharp with java, streams, virtual threads, rxjava, tuning the jvm, react, kafka, kafka streams, aws, k8s, helm, jenkins pipelines, CI-CD, ECR, istio issues, in-house service discovery, hierarchical multi-regions, metrics and monitoring, autoscaling, spot instances and multi-arch images, multi-az, reliable and scalable yet as cheap as possible, yet as cloud native as possible, hazelcast and distributed systems, low level postgresql performance tuning, apache iceberg, trino, various in-house frameworks and idioms over all of this? Oh, and let's not forget the business domain, coding standards, code reviews, mentorships and organazing technical events. Also, it's 2026 so nobody hires QA or scrum masters anymore so take on those hats as well.

So LLMs it is, the new reality.

aftergibson 30 minutes ago | parent [-]

This is a very good point. Years ago working in a LAMP stack, the term LAMP could fully describe your software engineering, database setup and infrastructure. I shudder to think of the acronyms for today's tech stacks.

daxfohl 11 hours ago | parent | prev | next [-]

Businesses too. For two years it's been "throw everything into AI." But now that shit is getting real, are they really feeling so coy about letting AI run ahead of their engineering team's ability to manage it? How long will it be until we start seeing outages that just don't get resolved because the engineers have lost the plot?

scorpioxy 5 hours ago | parent | next [-]

From what I am seeing, no one is feeling coy simply because of the cost savings that management is able to show the higher-ups and shareholders. At that level, there's very little understanding of anything technical and outages or bugs will simply get a "we've asked our technical resources to work on it". But every one understands that spending $50 when you were spending $100 is a great achievement. That's if you stop and not think about any downsides. Said management will then take the bonuses and disappear before the explosions start with their resume glowing about all the cost savings and team leadership achievements. I've experienced this first hand very recently.

daxfohl 5 hours ago | parent [-]

Of all the looming tipping points whereby humans could destroy the fabric of their existence, this one has to be the stupidest. And therefore the most likely.

throwup238 8 hours ago | parent | prev [-]

How long until “the LLM did it it” is just as effective as “AWS is down, not my fault”?

an hour ago | parent [-]
[deleted]
locknitpicker an hour ago | parent | prev | next [-]

> It's not just brain atrophy, I think. I think part of it is that we're actively making a tradeoff to focus on learning how to use the model rather than learning how to use our own brains and work with each other.

I agree with the sentiment but I would have framed it differently. The LLM is a tool, just like code completion or a code generator. Right now we focus mainly on how to use a tool, the coding agent, to achieve a goal. This takes place at a strategic level. Prior to the inception of LLMs, we focused mainly on how to write code to achieve a goal. This took place at a tactical level, and required making decisions and paying attention to a multitude of details. With LLMs our focus shifts to a higher-level abstraction. Also, operational concerns change. When writing and maintaining code yourself, you focus on architectures that help you simplify some classes of changes. When using LLMs, your focus shifts to building context and aiding the model effectively implement their changes. The two goals seem related, but are radically different.

I think a fairer description is that with LLMs we stop exercising some skills that are only required or relevant if you are writing your code yourself. It's like driving with an automatic transmission vs manual transmission.

bandrami an hour ago | parent [-]

Previous tools have been deterministic and understandable. I write code with emacs and can at any point look at the source and tell you why it did what it did. But I could produce the same program with vi or vscode or whatever, at the cost of some frustration. But they all ultimately transform keystrokes to a text file in largely the same way, and the compiler I'm targeting changes that to asm and thence to binary in a predictable and visible way.

An LLM is always going to be a black box that is neither predictable nor visible (the unpredictability is necessary for how the tool functions; the invisibility is not but seems too late to fix now). So teams start cargo culting ways to deal with specific LLMs' idiosyncrasies and your domain knowledge becomes about a specific product that someone else has control over. It's like learning a specific office suite or whatever.

rurp 4 hours ago | parent | prev [-]

I have deliberately moderated my use of AI in large part for this reason. For a solid two years now I've been constantly seeing claims of "this model/IDE/Agent/approach/etc is the future of writing code! It makes me 50x more productive, and will do the same for you!" And inevitabely those have all fallen by the wayside and been replaced by some new shiny thing. As someone who doesn't get intrinsic joy out of chasing the latest tech fad I usually move along and wait to see if whatever is being hyped really starts to take over the world.

This isn't to say LLMs won't change software development forever, I think they will. But I doubt anyone has any idea what kind of tools and approaches everyone will be using 5 or 10 years from now, except that I really doubt it will be whatever is being hyped up at this exact moment.

nemothekid 9 hours ago | parent | prev | next [-]

I think I should write more about but I have been feeling very similar. I've been recently exploring using claude code/codex recently as the "default", so I've decided to implement a side project.

My gripe with AI tools in the past is that the kind of work I do is large and complex and with previous models it just wasn't efficient to either provide enough context or deal with context rot when working on a large application - especially when that application doesn't have a million examples online.

I've been trying to implement a multiplayer game with server authoritative networking in Rust with Bevy. I specifically chose Bevy as the latest version was after Claude's cut off, it had a number of breaking changes, and there aren't a lot of deep examples online.

Overall it's going well, but one downside is that I don't really understand the code "in my bones". If you told me tomorrow that I had optimize latency or if there was a 1 in 100 edge case, not only would I not know where to look, I don't think I could tell you how the game engine works.

In the past, I could not have ever gotten this far without really understanding my tools. Today, I have a semi functional game and, truth be told, I don't even know what an ECS is and what advantages it provides. I really consider this a huge problem: if I had to maintain this in production, if there was a SEV0 bug, am I confident enough I could fix it? Or am I confident the model could figure it out? Or is the model good enough that it could scan the entire code base and intuit a solution? One of these three questions have to be answered or else brain atrophy is a real risk.

bedrio 4 hours ago | parent | next [-]

I'm worried about that too. If the error is reproducible, the model can eventually figure it out from experience. But a ghost bug that I can't pattern? The model ends up in a "you're absolutely right" loop as it incorrectly guesses different solutions.

mattmanser an hour ago | parent [-]

Are ghost bugs even real?

My first job had the Devs working front-line support years ago. Due to that, I learnt an important lessons in bug fixing.

Always be able to re-create the bug first.

There are no such thing as ghost bugs, you just need to ask the reporter the right questions.

Unless your code is multi-threaded, to which I say, good luck!

SpicyLemonZest 44 minutes ago | parent [-]

Historically I would have agreed with you. But since the rise of LLM-assisted coding, I've encountered an increasing number of things I'd call clear "ghost bugs" in single threaded code. I found a fun one today where invoking a process four times with a very specific access pattern would cause a key result of the second invocation to be overwritten. (It is not a coincidence, I don't think, that these are exactly the kind of bugs a genAI-as-a-service provider might never notice in production.)

mh2266 6 hours ago | parent | prev | next [-]

> I've been trying to implement a multiplayer game with server authoritative networking in Rust with Bevy. I specifically chose Bevy as the latest version was after Claude's cut off, it had a number of breaking changes, and there aren't a lot of deep examples online.

I am interested in doing something similar (Bevy. not multiplayer).

I had the thought that you ought be able to provide a cargo doc or rust-analyzer equivalent over MCP? This... must exist?

I'm also curious how you test if the game is, um... fun? Maybe it doesn't apply so much for a multiplayer game, I'm thinking of stuff like the enemy patterns and timings in a soulslike, Zelda, etc.

I did use ChatGPT to get some rendering code for a retro RCT/SimCity-style terrain mesh in Bevy and it basically worked, though several times I had to tell it "yeah uh nothing shows up", at which point is said "of course! the problem is..." and then I learned about mesh winding, fine, okay... felt like I was in over my head and decided to go to a 2D game instead so didn't pursue that further.

nemothekid 4 hours ago | parent [-]

>I had the thought that you ought be able to provide a cargo doc or rust-analyzer equivalent over MCP? This... must exist?

I've found that there are two issues that arise that I'm not sure how to solve. You can give it docs and point to it and it can generally figure out syntax, but the next issue I see is that without examples, it kind of just brute forces problems like a 14 year old.

For example, the input system originally just let you move left and right, and it popped it into an observer function. As I added more and more controls, it began to litter with more and more code, until it was ~600 line function responsible for a large chunk of game logic.

While trying to parse it I then had it refactor the code - but I don't know if the current code is idiomatic. What would be the cargo doc or rust-analyzer equivalent for good architecture?

Im running into this same problem when trying to claude code for internal projects. Some parts of the codebase just have really intuitive internal frameworks and claude code can rip through them and provide great idiomatic code. Others are bogged down by years of tech debt and performance hacks and claude code can't be trusted with anything other than multi-paragraph prompts.

>I'm also curious how you test if the game is, um... fun?

Lucky enough for me this is a learning exercise, so I'm not optimizing for fun. I guess you could ask claude code to inject more fun.

9 hours ago | parent | prev [-]
[deleted]
overfeed 5 hours ago | parent | prev | next [-]

> Eventually it was easier just to quit fighting it and let it do things the way it wanted.

I wouldn't have believed it a few tears ago if you told me the industry would one day, in lockstep, decide that shipping more tech-debt is awesome. If the unstated bet doesn't pay off, that is, AI development will outpace the rate it generates cruft, then there will be hell to pay.

ithkuil 4 hours ago | parent | next [-]

Don't worry. This will create the demand for even more powerful models that are able to untangle the mess created by previous models.

Once we realize the kind of mess _those_ models created, well, we'll need even more capable models.

It's a variation on the theme of Kernighan insight about the more "clever" you are while coding the harder it will be to debug.

EDIT: Simplicity is a way out but it's hard under normal circumstances, now with this kind of pressure to ship fast because the colleague with the AI chimp can outperform you, aiming at simplicity will require some widespread understanding

scorpioxy 5 hours ago | parent | prev | next [-]

As someone who's been commissioned many times before to work on or salvage "rescue projects" with huge amounts of tech debt, I welcome that day. Still not there yet though I am starting to feel the vibes shifting.

This isn't anything new of course. Previously it was with projects built by looking for the cheapest bidder and letting them loose on an ill-defined problem. And you can just imagine what kind of code that produced. Except the scale is much larger.

My favorite example of this was a project that simply stopped working due to the amount of bugs generated from layers upon layers of bad code that was never addressed. That took around 2 years of work to undo. Roughly 6 months to un-break all the functionality and 6 more months to clean up the core and then start building on top.

sally_glance an hour ago | parent [-]

Are you not worried that the sibling comment is right and the solution to this will be "more AI" in the future? So instead of hiring a team of human experts to cleanup, management might just dump more money into some specialized AI refactoring platform or hire a single AI coordinator... Or maybe they skip to rebuild using AI faster, because AI is good at greenfield. Then they only need a specialized migration AI to automate the regular switchovers.

I used to be unconcerned, but I admit to be a little frightened of the future now.

daxfohl 5 hours ago | parent | prev | next [-]

> unstated bet

(except where it's been stated, championed, enforced, and ultimated in no unequivocal terms by every executive in the tech industry)

overfeed 4 hours ago | parent [-]

I'm yet to encounter an AI-bull who admits the LLM tendency towards creating tech debt- outside of footnotes stating it can be fixed by better prompting (with no examples), or solved by whatever tool they are selling

TeMPOraL 34 minutes ago | parent | prev [-]

The industry decided that decades ago. We may like to talk about quality and forethought, but when you actually go to work, you quickly discover it doesn't matter. Small companies tell you "we gotta go fast", large companies demand clear OKRs and focusing on actually delivering impact - either way, no one cares about tech debt, because they see it as unavoidable fact of life. Even more so now, as ZIRP went away and no one can afford to pay devs to polish the turd ad infinitum. The mantra is, ship it and do the next thing, clean up the old thing if it ever becomes a problem.

And guess what, I'm finally convinced they're right.

Consider: it's been that way for decades. We may tell ourselves good developers write quality code given the chance, but the truth is, the median programmer is a junior with <5 years of experience, and they cannot write quality code to save their life. That's purely the consequence of rapid growth of software industry itself. ~all production code in the past few decades was written by juniors, it continues to be so today; those who advance to senior level end up mostly tutoring new juniors instead of coding.

Or, all that put another way: tech debt is not wrong. It's a tool, a trade-off. It's perfectly fine to be loaded with it, if taking it lets you move forward and earn enough to afford paying installments when they're due. Like with housing: you're better off buying it with lump payment, or off savings in treasury bonds, but few have that money on hand and life is finite, so people just get a mortgage and move on.

--

Edited to add: There's a silver lining, though. LLMs make tech debt legible and quantifiable.

LLMs are affected by tech debt even more than human devs are, because (currently) they're dumber, they have less cognitive capability around abstractions and generalizations[0]. They make up for it by working much faster - which is a curse in terms of amplifying tech debt, but also a blessing, because you can literally see them slowing down.

Developer productivity is hard to measure in large part because the process is invisible (happens in people's heads and notes), and cause-and-effect chains play out over weeks or months. LLM agents compress that to hours to days, and the process itself is laid bare in the chat transcript, easy to inspect and analyze.

The way I see it, LLMs will finally allow us to turn software development at tactical level from art into an engineering process. Though it might be too late for it to be of any use to human devs.

--

[0] - At least the out-of-distribution ones - quirks unique to particular codebase and people behind it.

krupan 10 hours ago | parent | prev | next [-]

I've been thinking along these lines. LLMs seem to have arrived right when we were all getting addicted to reels/tic tocks/whatever. For some reason we love to swipe, swipe, swipe, until we get something funny/interesting/shocking, that gives us a short-lasting dopamine hit (or whatever chemicals it is) that feels good for about 1 second, and we want MORE, so we keep swiping.

Using an LLM is almost exactly the same. You get the occasional, "wow! I've never seen it do that before!" moments (whether that thing it just did was even useful or not), get a short hit of feel goods, and then we keep using it trying to get another hit. It keeps providing them at just the right intervals for people to keep them going just like they do with tick tock

CharlieDigital 8 hours ago | parent | prev | next [-]

I ran into a new problem today: "reading atrophy".

As in if the LLM doesn't know about it, some devs are basically giving up and not even going to RTFM. I literally had to explain to someone today how something works by...reading through the docs and linking them the docs with screenshots and highlighted paragraphs of text.

Still got push back along the lines of "not sure if this will work". It's. Literally. In. The. Docs.

finaard an hour ago | parent | next [-]

That's not really a new thing now, it just shows differently.

15 years ago I was working in an environment where they had lots of Indians as cheap labour - and the same thing will show up in any environment where you go for hiring a mass of cheap people while looking more at the cost than at qualifications: You pretty much need to trick them into reading stuff that are relevant.

I remember one case where one had a problem they couldn't solve, and couldn't give me enough info to help remotely. In the end I was sitting next to them, and made them read anything showing up on the screen out loud. Took a few tries where they were just closing dialog boxes without reading it, but eventually we had that under control enough that they were able to read the error messages to me, and then went "Oh, so _that's_ the problem?!"

Overall interacting with a LLM feels a lot like interacting with one of them back then, even down to the same excuses ("I didn't break anything in that commit, that test case was never passing") - and my expectation for what I can get out of it is pretty much the same as back then, and approach to interacting with it is pretty similar. It's pretty much an even cheaper unskilled developer, you just need to treat it as such. And you don't pair it up with other unskilled developers.

globular-toast an hour ago | parent | prev [-]

The mere existence of the phrase "RTFM" shows that this phenomenon was already a thing. LLMs are the worst thing to happen to people who couldn't read before. When HR type people ask what my "superpower" is I'm so tempted to say "I can read", because I honestly feel like it's the only difference between me and people who suck at working independently.

gritspants 11 hours ago | parent | prev | next [-]

My disillusionment comes from the feeling I am just cosplaying my job. There is nothing to distinguish one cosplayer from another. I am just doordashing software, at this point, and I'm not in control.

solumunus 2 hours ago | parent [-]

I don’t get this at all. I’m using LLM’s all day and I’m constantly having to make smart architectural choices that other less experienced devs won’t be making. Are you just prompting and going with whatever the initial output is, letting the LLM make decisions? Every moderately sized task should start with a plan, I can spend hours planning, going off and thinking, coming back to the plan and adding/changing things, etc. Sometimes it will be days before I tell the LLM to “go”. I’m also constantly optimising the context available to the LLM, and making more specific skills to improve results. It’s very clear to me that knowledge and effort is still crucial to good long term output… Not everyone will get the same results, in fact everyone is NOT getting the same results, you can see this by reading the wildly different feedback on HN. To some LLM’s are a force multiplier while others claim they can’t get a single piece of decent output…

I think the way you’re using these tools that makes you feel this way is a choice. You’re choosing to not be in control and do as little as possible.

amluto 4 hours ago | parent | prev | next [-]

I’ve actually found the tool that inspires the most worry about brain atrophy to be Copilot. Vscode is full of flashing suggestions all over. A couple days ago, I wanted to write a very quick program, and it was basically impossible to write any of it without Copilot suggesting a whole series of ways to do what it thought I was doing. And it seems that MS wants this: the obvious control to turn it off is actually just “snooze.”

I found the setting and turned it off for real. Good riddance. I’ll use the hotkey on occasion.

sosomoxie 8 hours ago | parent | prev | next [-]

I've gone years without coding and when I come back to it, it's like riding a bike! In each iteration of my coding career, I have become a better developer, even after a large gap. Now I can "code" during my gap. Were I ever to hand-code again, I'm sure my skills would be there. They don't atrophy, like your ability to ride a bike doesn't atrophy. Yes you may need to warm back up, but all the connections in your brain are still there.

Ronsenshi an hour ago | parent | next [-]

You might still have the skillset to write code, but depending on length of the break your knowledge of tools, frameworks, patterns would be fairly outdated.

I used to know a person like that - high in the company structure who would claim he was a great engineer, but all the actual engineers would make jokes about him and his ancient skills during private conversations.

runarberg 3 hours ago | parent | prev [-]

Have you ever learnt a foreign language (say Mongolian, or Danish) and then never spoken it, nor even read anything in it for over 10 years? It is not like riding a bike, it doesn’t just come back like that. You have to actually relearn the language, practice it, and you will suck at it for months. Comprehension comes first (within weeks) but you will be speaking with grammatical errors, mispronunciations, etc. for much longer. You won‘t have to learn the language from scratch, second time around is much easier, but you will have to put in the effort. And if you use google translate instead of your brain, you won‘t relearn the language at all. You will simply forget it.

tayo42 2 hours ago | parent [-]

Anecdotally, i burned out pretty hard and basically didn't open a text editor for half a year (unemployed too). Eventually i got an itch to write code again and it didn't really feel like I was really worse. Maybe it wasn't long enough atrophy but code doesn't seem to quite work like language though ime.

Ronsenshi an hour ago | parent [-]

Six months is definitely not long enough of a break for skills to degrade. But it's not just skills, as I wrote in another comment, the biggest thing is knowledge of new tools, new versions of language and its features.

I'd say there's at most around 2 years of knowledge runtime (maybe with all this AI stuff this is even shorter). After that period if you don't keep your knowledge up to date it fairly quickly becomes obsolete.

seer 5 hours ago | parent | prev | next [-]

Honestly, this seems very much like the jump from being an individual contributor to being an engineering manager.

The time it happened for me was rather abrupt, with no training in between, and the feeling was eerily similar.

You know _exactly_ why the best solution is, you talk to your reports, but they have minds of their own, as well as egos, and they do things … their own way.

At some point I stopped obsessing with details and was just giving guidance and direction only in the cases where it really mattered, or when asked, but let people make their own mistakes.

Now LLMs don’t really learn on their own or anything, but the feeling of “letting go of small trivial things” is sorta similar. You concentrate on the bigger picture, and if it chose to do an iterative for loop instead of using a functional approach the way you like it … well the tests still pass, don’t they.

Ronsenshi 43 minutes ago | parent [-]

The only issue is that as an engineering manager you reasonably expect that the team learns new things, improve their skills, in general grow as engineers. With AI and its context handling you're working with a team where each member has severe brain damage that affects their ability to form long term memories. You can rewire their brain to a degree teaching them new "skills" or giving them new tools, but they still don't actually learn from their mistakes or their experiences.

freediver 10 hours ago | parent | prev | next [-]

My experience is the opposite - I haven't used my brain more in a while.. Typing characters was never what developers were valued for anyway. The joy of building is back too.

swader999 10 hours ago | parent [-]

Same. I feel I need to be way more into the domain and what the user is trying to do than ever before.

zamalek 9 hours ago | parent | prev | next [-]

> I worry about the "brain atrophy" part, as I've felt this too. And not just atrophy, but even moreso I think it's evolving into "complacency".

Not trusting the ML's output is step one here, that keeps you intellectually involved - but it's still a far cry from solving the majority of problems yourself (instead you only solve problems ML did a poor job at).

Step two: I delineate interesting and uninteresting work, and Claude becomes a pair programmer without keyboard access for the latter - I bounce ideas off of it etc. making it an intelligent rubber duck. [Edit to clarify, a caveat is that] I do not bore myself with trivialities such as retrieving a customer from the DB in a REST call (but again, I do verify the output).

epolanski 9 hours ago | parent | prev | next [-]

> Like if I had stated certain design goals recently it would adhere to them, but after a few iterations it would forget again and go back to its original approach, or mix the two, or whatever.

Context management, proper prompting and clear instructions, proper documentation are still relevant.

polytely 9 hours ago | parent | prev | next [-]

I feel like I'm still a couple steps behind in skill level as my lead and is trying to gain more experience I do wonder if I am shooting myself in the foot if I rely too much on AI at this stage. The senior engineer I'm trying to learn from can very effectively use ai because he has very good judgement of code quality, I feel like if I use AI too much I might lose out on chance to improve my judgement. It's a hard dilemma.

mupuff1234 3 hours ago | parent | prev | next [-]

He didn't say "brain atrophy", he was talking about coding abilities.

Imustaskforhelp 13 hours ago | parent | prev | next [-]

> I want to say it's very akin to doom scrolling. Doom tabbing? It's like, yeah I could be more creative with just a tad more effort, but the AI is already running and the bar to seeing what the AI will do next is so low, so....

Yea exactly, Like we are just waiting so that it gets completed and after it gets completed then what? We ask it to do new things again.

Just as how if we are doom scrolling, we watch something for a minute then scroll down and watch something new again.

The whole notion of progress feels completely fake with this. Somehow I guess I was in a bubble of time where I had always end up using AI in web browsers (just as when chatgpt 3 came) and my workflow didn't change because it was free but recently changed it when some new free services dropped.

"Doom-tabbing" or complete out of the loop AI agentic programming just feels really weird to me sucking the joy & I wouldn't even consider myself a guy particular interested in writing code as I had been using AI to write code for a long time.

I think the problem for me was that I always considered myself a computer tinker before coder. So when AI came for coding, my tinkering skills were given a boost (I could make projects of curiosity I couldn't earlier) but now with AI agents in this autonomous esque way, it has come for my tinkering & I do feel replaced or just feel like my ability of tinkering and my interests and my knowledge and my experience is just not taken up into account if AI agent will write the whole code in multi file structure, run commands and then deploy it straight to a website.

I mean my point is tinkering was an active hobby, now its becoming a passive hobby, doom-tinkering? I feel like I have caught up on the feeling a bit earlier with just vibe from my heart but is it just me who feels this or?

What could be a name for what I feel?

dirtytoken7 12 hours ago | parent | prev | next [-]

[dead]

stuaxo 11 hours ago | parent | prev [-]

LLMs have some terrible patterns, don't know what do ? Just chuck a class named Service in.

Have to really look out for the crap.