▲ | measurablefunc 6 days ago | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There are multiple solutions for each incomplete grid so how are you calculating the transitions for a grid w/ a non-unique solution? Edit: I see you added questions for the ambiguities but modulo those choices your solution will almost work b/c it is not extensionally equivalent entirely. The transition graph and solver are almost extensionally equivalent but whereas the Prolog solver will backtrack there is no backtracking in the Markov chain and you have to re-run the chain multiple times to find all the solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | Ukv 6 days ago | parent | next [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> but whereas the Prolog solver will backtrack there is no backtracking in the Markov chain and you have to re-run the chain multiple times to find all the solutions If you want it to give all possible solutions at once, you can just expand the state space to the power-set of sudoku boards, such that the input board transitions to the state representing the set of valid solved boards. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | 6 days ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
[deleted] |