▲ | Ukv 6 days ago | |||||||||||||||||||||||||||||||||||||||||||
> but whereas the Prolog solver will backtrack there is no backtracking in the Markov chain and you have to re-run the chain multiple times to find all the solutions If you want it to give all possible solutions at once, you can just expand the state space to the power-set of sudoku boards, such that the input board transitions to the state representing the set of valid solved boards. | ||||||||||||||||||||||||||||||||||||||||||||
▲ | measurablefunc 6 days ago | parent | next [-] | |||||||||||||||||||||||||||||||||||||||||||
That still won't work b/c there is no backtracking. The point is that there is no way to encode backtracking/choice points like in Prolog w/ a Markov chain. The argument you have presented is not extensionally equivalent to the Prolog solver. It is almost equivalent but it's missing choice points for starting at a valid solution & backtracking to an incomplete board to generate a new one. The typical argument for absorbing states doesn't work b/c sudoku is not a typical deterministic puzzle. | ||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||
▲ | Certhas 5 days ago | parent | prev [-] | |||||||||||||||||||||||||||||||||||||||||||
People really don't appreciate what is possible in infinite (or more precisely: arbitrarily high) dimensional spaces. |