| ▲ | xnorswap 8 hours ago | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> it can't find actual flaws in your code I can tell from this statement that you don't have experience with claude-code. It might just be a "text predictor" but in the real world it can take a messy log file, and from that navigate and fix issues in source. It can appear to reason about root causes and issues with sequencing and logic. That might not be what is actually happening at a technical level, but it is indistinguishable from actual reasoning, and produces real world fixes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ▲ | Tade0 7 hours ago | parent | next [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> I can tell from this statement that you don't have experience with claude-code. I happen to use it on a daily basis. 4.6-opus-high to be specific. The other day it surmised from (I assume) the contents of my clipboard that I want to do A, while I really wanted to B, it's just that A was a more typical use case. Or actually: hardly anyone ever does B, as it's a weird thing to do, but I needed to do it anyway. > but it is indistinguishable from actual reasoning I can distinguish it pretty well when it makes mistakes someone who actually read the code and understood it wouldn't make. Mind you: it's great at presenting someone else's knowledge and it was trained on a vast library of it, but it clearly doesn't think itself. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ▲ | LoganDark 8 hours ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
What you're describing is not finding flaws in code. It's summarizing, which current models are known to be relatively good at. It is true that models can happen to produce a sound reasoning process. This is probabilistic however (moreso than humans, anyway). There is no known sampling method that can guarantee a deterministic result without significantly quashing the output space (excluding most correct solutions). I believe we'll see a different landscape of benefits and drawbacks as diffusion language models begin to emerge, and as even more architectures are invented and practiced. I have a tentative belief that diffusion language models may be easier to make deterministic without quashing nearly as much expressivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||