| ▲ | Aachen 4 hours ago | |
I am not a chip designer but from my limited understanding, this "somewhere" is the problem. You can have secret memory somewhere that isn't noticed by analysts, but can it remain secret if it is as big as half the cpu? A quarter? How much storage can you fit in that die space? How many AES keys do you handle per day? Per hour of browsing HN with AES TLS ciphers? (Literally all supported ciphers by HN involve AES) We use memory-hard algorithms for password storage because memory is more expensive than compute. More specifically, it's die area that is costly, but at least the authors of Argon2 seem to equate the two. (If that's not correct, I based a stackoverflow post or two on that paper so please let me know.) It sounds to me like it's easily visible to a microscope when there's another storage area as large as the L1 cache (which can hold a few thousand keys at most... how to decide which ones to keep) Of course, the cpu is theoretically omnipotent within your hardware. It can read the RAM and see "ah, you're running pgp.exe, let me store this key", but then you could say the same for any key that your cpu handles (also rsa or anything not using special cpu instructions) | ||