Remix.run Logo
flohofwoe 3 hours ago

> The typical lifetime of a codebase intended for a lasting application is over 15 or 20 years (in industrial control or aerospace).

Either those applications are actively maintained, or they aren't. Part of the active maintenance is to decide whether to upgrade to a new compiler toolchain version (e.g. when in doubt, "never change a running system"), old compiler toolchains won't suddenly stop working.

FWIW, trying to build a 20 or 30 year old C or C++ application in a modern compiler also isn't exactly trivial, depending on the complexity of the code base (especially when there's UB lurking in the code, or the code depends on specific compiler bugs to be present - e.g. changing anything in a project setup always comes with risks attached).

pron 2 hours ago | parent | next [-]

> Part of the active maintenance is to decide whether to upgrade to a new compiler toolchain version

Of course, but you want to make that as easy as you can. Compatibility is never binary (which is why I hate semantic versioning), but you should strive for the greatest compatibility for the greatest portion of users.

> FWIW, trying to build a 20 or 30 year old C or C++ application in a modern compiler also isn't exactly trivial

I know that well (especially for C++; in C the situation is somewhat different), and the backward compatibility of C++ compilers leaves much to be desired.

strawhatguy 2 hours ago | parent | prev [-]

You could fix versions, and probably should. However willful disregard of prior interfaces encourages developers code to follow suit.

It’s not like Clojure or Common Lisp, where a decades old software still runs, mostly unmodified, the same today, any changes mainly being code written for a different environment or even compiler implementation. This is largely because they take breaking user code way more seriously. Alot of code written in these languages seem to have similar timelessness too. Software can be “done”.