| ▲ | adrian_b 3 hours ago | |
For me, the complex numbers arise as the quotients of 2-dimensional vectors (which arise as translations of the 2-dimensional affine space). This means that complex numbers are equivalence classes of pairs of vectors is a 2-dimesional vector space, like 2-dimensional vectors are equivalence classes of pairs of points in a 2-dimensional affine space or rational numbers are equivalence classes of pairs of integers, or integers are equivalence classes of pairs of natural numbers, which are equivalence classes of equipotent sets. When you divide 2 collinear 2-dimensional vectors, their quotient is a real number a.k.a. scalar. When the vectors are not collinear, then the quotient is a complex number. Multiplying a 2-dimensional vector with a complex number changes both its magnitude and its direction. Multiplying by +i rotates a vector by a right angle. Multiplying by -i does the same thing but in the opposite sense of rotation, hence the difference between them, which is the difference between clockwise and counterclockwise. Rotating twice by a right angle arrives in the opposite direction, regardless of the sense of rotation, therefore i*i = (-i))*(-i) = -1. Both 2-dimensional vectors and complex numbers are included in the 2-dimensional geometric algebra, whose members have 2^2 = 4 components, which are the 2 components of a 2-dimensional vector together with the 2 components of a complex number. Unlike the complex numbers, the 2-dimensional vectors are not a field, because if you multiply 2 vectors the result is not a vector. All the properties of complex numbers can be deduced from those of the 2-dimensional vectors, if the complex numbers are defined as quotients, much in the same way how the properties of rational numbers are deduced from the properties of integers. A similar relationship like that between 2-dimensional vectors and complex numbers exists between 3-dimensional vectors and quaternions. Unfortunately the discoverer of the quaternions, Hamilton, has been confused by the fact that both vectors and quaternions have multiple components and he believed that vectors and quaternions are the same thing. In reality, vectors and quaternions are distinct things and the operations that can be done with them are very different. This confusion has prevented for many years during the 19th century the correct use of quaternions and vectors in physics (like also the confusion between "polar" vectors and "axial" vectors a.k.a. pseudovectors). | ||
| ▲ | anthk 2 hours ago | parent [-] | |
Also, with elementary math: y+ as positive exponential numbers, y- as negative. Try rotating 90 deg the axis, into the -x part. What happens? | ||