Remix.run Logo
kimixa 2 hours ago

Output from radiating heat scales with area it can dissipate from. Lots of small satellites have a much higher ratio than fewer larger satellites. Cooling 10k separate objects is orders of magnitude easier than 10 objects at 1000x the power use, even if the total power output is the same.

Distributing useful work over so many small objects is a very hard problem, and not even shown to be possible at useful scales for many of the things AI datacenters are doing today. And that's with direct cables - using wireless communication means even less bandwidth between nodes, more noise as the number of nodes grows, and significantly higher power use and complexity for the communication in the first place.

Building data centres in the middle of the sahara desert is still much better in pretty much every metric than in space, be it price, performance, maintainance, efficiency, ease of cooling, pollution/"trash" disposal etc. Even things like communication network connectivity would be easier, as at the amounts of money this constellation mesh would cost you could lay new fibre optic cables to build an entire new global network to anywhere on earth and have new trunk connections to every major hub.

There are advantages to being in space - normally around increased visibility for wireless signals, allowing great distances to be covered at (relatively) low bandwidth. But that comes at an extreme cost. Paying that cost for a use case that simply doesn't get much advantages from those benefits is nonsense.

sandworm101 24 minutes ago | parent [-]

Whatever sat datacenter they biuld, it will run better/easier/faster/cheaper sitting on the ground in antarctica than it will in space, or floating on the ocean, without the launch costs. Space is useful for those activities that can only be done from space. For general computing? Not until all the empty parts of the globe are full.

This is a pump-and-dump bid for investor money. And they will give it to him.