Remix.run Logo
synctext 5 hours ago

Is the SpaceX thin-foil cooling based on graphene real? Can experts check this out?

"SmartIR’s graphene-based radiator launches on SpaceX Falcon 9" [1]. This could be the magic behind this bet on heat radiation through exotic material. Lot of blog posts say impossible, expensive, stock pump, etc. Could this be the underlying technology breakthrough? Along with avoiding complex self-assembly in space through decentralization (1 million AI constellation, laser-grid comms).

[1] https://www.graphene-info.com/smartir-s-graphene-based-radia...

ajnin 3 hours ago | parent [-]

This coating looks like it can selectively make parts of the satellite radiators or insulators, as to regulate temperature. But I don't think it can change the fundamental physics of radiating unwanted heat and that you can't do better than black body radiation.

synctext 2 hours ago | parent [-]

Indeed, graphene seems capable of .99 of black body radiation limit.

Quote: "emissivity higher than 0.99 over a wide range of wavelengths". Article title "Perfect blackbody radiation from a graphene nanostructure" [1]. So several rolls of 10 x 50 meters graphene-coated aluminium foil could have significant cooling capability. No science-fiction needed anymore (see the 4km x 4km NVIDIA fantasy)

[1] https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-25-30964

habinero 29 minutes ago | parent [-]

It's not as exciting as you think it is. "emissivity higher than 0.99 over a wide range of wavelengths" is basically code for "it's, like, super black"

The limiting factor isn't the emissivity, it's that you're having to rely on radiation as your only cooling mechanism. It's super slow and inefficient and it limits how much heat you can dissipate.

Like the other person said, you can't do any better than blackbody radiation (emissivity=1).