Remix.run Logo
c1ccccc1 8 hours ago

Radiators can shadow each other, so that puts some kind of limit on the size of the individual satellite (which limits the size of training run it can be used for, but I guess the goal for these is mostly inference anyway). More seriously, heat conduction is an issue: If the radiator is too long, heat won't get from its base to its tip fast enough. Using fluid is possible, but adds another system that can fail. If nothing else, increasing the size of the radiator means more mass that needs to be launched into space.

DoctorOetker 4 hours ago | parent [-]

please check my didactic example here: https://news.ycombinator.com/item?id=46862869

"Radiators can shadow each other," this is precisely why I chose a convex shape, that was not an accident, I chose a pyramid just because its obvious that the 4 triangular sides can be kept in the shade with respect to the sun, and their area can be made arbitrarily large by increasing the height of the pyramid for a constant base. A convex shape guarantees that no part of the surface can appear in the hemispherical view of any other part of the surface.

The only size limit is technological / economical.

In practice h = 3xL where L was the square base side length, suffices to keep the temperature below 300K.

If heat conduction can't be managed with thermosiphons / heat pipes / cooling loops on the satellite, why would it be possible on earth? Think of a small scale satellite with pyramidal sats roughly h = 3L, but L could be much smaller, do you actually see any issue with heat conduction? scaling up just means placing more of the small pyramidal sats.