This is the easiest of the paradoxes mentioned in this thread to explain. I want to emphasize that this proof uses the technique of "Assume P, derive contradiction, therefore not P". This kind of proof relies on knowing what the running assumptions are at the time that the contradiction is derived, so I'm going to try to make that explicit.
Here's our first assumption: suppose that there's a set X with the property that for any set Y, Y is a member of X if and only if Y doesn't contain itself as a member. In other words, suppose that the collection of sets that don't contain themselves is a set and call it X.
Here's another assumption: Suppose X contains itself. Then by the premise, X doesn't contain itself, which is contradictory. Since the innermost assumption is that X contains itself, this proves that X doesn't contain itself (under the other assumption).
But if X doesn't contain itself, then by the premise again, X is in X, which is again contradictory. Now the only remaining assumption is that X exists, and so this proves that there cannot be a set with the stated property. In other words, the collection of all sets that don't contain themselves is not a set.