Remix.run Logo
observationist 2 hours ago

This is one of the reasons the RLM methodology works so well. You have access to as much information as you want in the overall environment, but only the things relevant to the task at hand get put into context for the current task, and it shows up there 100% of the time, as opposed to lossy "memory" compaction and summarization techniques, or probabilistic agent skills implementations.

Having an agent manage its own context ends up being extraordinarily useful, on par with the leap from non-reasoning to reasoning chats. There are still issues with memory and integration, and other LLM weaknesses, but agents are probably going to get extremely useful this year.