Remix.run Logo
imtringued an hour ago

Your list is so short it doesn't even include the basics such as reordering operations.

It also feels incredibly snarky to say "they knew about caching" and that they will get to partial evaluation and dead code elimination, when those seem to be particularly useless (beyond what the CUDA compiler itself does) when it comes to writing GPU kernels or doing machine learning in general.

You can't do any partial evaluation of a neural network because the activation functions are interrupting the multiplication of tensors. If you remove the activation function, then you end up with two linear layers that are equivalent to one linear layer, defeating the point of the idea. You could have trained a network with a single layer instead and achieved the same accuracy with a corresponding shorter training/inference time.

Dead code elimination is even more useless since most kernels are special purpose to begin with and you can't remove tensors without altering the architecture. Instead of adding useless tensors only to remove them, you could have simply used a better architecture.