Remix.run Logo
goku12 4 hours ago

That's the Kessler Syndrome. But it's better if it happens in a lower orbit, irrespective of what assets are present there. Space will be free for exploration again in a few years since all the debris there would eventually decay and deorbit.

The article mentions a few months at 480 km. I'm a little skeptical about this figure though, because the last tracked piece from an NRO satellite that was shot down at ~250 km by SM-3 missile in operation burnt frost, lasted 20 months in space before reentry. SpaceX is probably using a statistical cutoff percentage of fragments to calculate the time. But all the pieces are dangerous uncontrolled hypervelocity projectiles. Spain lost a military communications satellite a few days ago from a collision with a tiny undetermined space debris.

Cthulhu_ 2 hours ago | parent | next [-]

It's one reason why space should be regulated (but globally / internationally), the systems in place are kinda loose and more of a gentleman's agreement insofar as I understand it. A plan for decomissioning / de-orbiting stuff should definitely be mandatory. I know there's an area for geostationary sattelites to park themselves after their lifespan, for example.

But the LEO ones like Starlink will see their orbit decay in about five years (if I'm reading things correctly) even if they run out of fuel / can no longer be controlled, according to e.g. https://space.stackexchange.com/a/59560. But it's exponential, at 600 km it takes 10 years, at 700 25 years, at 800 100 years, etc. Between 500-600 km seems to be ideal for things to naturally decay in case of issues.

But also, it won't be a hard and fast "we are confined to the earth now"; the simplest model is a "the risk of being hit by debris is now x%", more advanced is "there are debris clouds in these altitudes / inclinations so best to avoid those at these times of day".

vermilingua 2 hours ago | parent [-]

Given that the previous world police are presently treating international law as toilet paper, how do you propose global regulation of space would work or be enforced?

_factor 3 hours ago | parent | prev [-]

Two objects colliding can send debris into different orbits. Combined kinetic energy and mass differences can send debris to many different orbits.

A golf ball hitting a bowling ball or basketball, both traveling at 30 units of speed can produce quite a fast golf ball. Not all of the debris will safely burn up.

tlb 3 hours ago | parent | next [-]

At the speeds we're familiar with, basketballs and golf balls have elastic collisions. At orbital speeds, satellites are nearly inelastic. So fragment exit velocities lie between the two initial velocities, kv1 + (1-k)v2 for some k that depends on where each fragment came from. If they're colliding, the velocities must be somewhat different, so the weighted average speed has to be lower than orbital speed. So fragments usually don't survive many orbits.

perilunar 27 minutes ago | parent | next [-]

I guess if a collision ruptures a pressurised tank, or causes an actual explosion then you could end up with a higher-than-orbit speed?

WithinReason 2 hours ago | parent | prev [-]

That's what I was thinking, Kessler syndrome should be impossible for objects in LEO since all debris orbits decay rapidly (probably 99.9% enter the atmosphere and burn up in minutes, the rest in hours)

ViewTrick1002 2 hours ago | parent | prev [-]

The periapsis will always pass through where the collision happened.

To circularize at a higher orbit you would need secondary collisions on the other side of the earth.

goku12 2 minutes ago | parent [-]

You're right that all the fragments will pass roughly through the impact point in orbit. But it's not always the periapsis.

1. The normal or anti-normal delta-v imparted by the explosion/fragmentation (i.e, the velocity imparted perpendicular the plane of initial orbit) will cause the orbital plane of the fragment to change. The new orbit will intersect the old orbit at the impact point. Meanwhile, the eccentricity (the stretch of the orbit), semi-major axis (the size of the orbit) and displacement of periapsis from the impact point (the orientation of the orbit) remains the same as the initial orbit.

2. The prograde and retrograde delta-v (velocity imparted tangential to the orbit) will cause the diametrically opposite side of the orbit to rise or fall respectively. Here too, the new orbit intersects the old orbit at the point of impact. But since the impact point isn't guaranteed to be the periapsis or apoapsis, the above mentioned diametrically-opposing point also cannot be guaranteed to be an apsis.

3. The radial and anti-radial delta-v (this is in the third perpendicular axis) will cause the orbit of the fragment to either dip or rise radially at the point of impact. Again the impact point remains the same for the new orbit. So the new orbit will intersect the old orbit either from the top or the bottom. The new orbit will look like the old orbit with one side lowered and the other side raised about the impact point.

So none of three components of delta-v shifts the orbit from the impact point. You can extrapolate this to all the fragments and you'll see that they will all pass through the impact point. The highest chance of recontact exists there. However the perturbation forces do disperse the crossing point (the original impact point) to a larger volume over time.