| ▲ | IsTom 18 hours ago | |
> it's rare that the theorem statement itself is particularly hard to formalize That's very dependent on the problem area. For example there's a gap between high school explanation of central limit theorem and actual formalization of it. And when dealing with turing machines sometimes you'll say that something grows e.g. Omega(n), but what happens is that there's some subsequence of inputs for which it does. Generally for complexity theory plain-language explanations can be very vague, because of how insensitive the theory is to small changes and you need to operate on a higher level of abstraction to have a chance to explain a proof in reasonable time. | ||
| ▲ | zozbot234 16 hours ago | parent [-] | |
Yes, if the theorem statement itself is "hard to formalize" even given our current tools, formal foundations etc. for this task, this suggests that the underlying math itself is still half-baked in some sense, and could be improved to better capture the concepts we're interested in. Much of analysis-heavy math is in that boat at present, compared to algebra. | ||