| ▲ | ryang2718 3 days ago | ||||||||||||||||
I find it helpful to view least as fitting the noise to a Gaussian distribution. | |||||||||||||||||
| ▲ | MontyCarloHall 3 days ago | parent | next [-] | ||||||||||||||||
They both fit Gaussians, just different ones! OLS fits a 1D Gaussian to the set of errors in the y coordinates only, whereas TLS (PCA) fits a 2D Gaussian to the set of all (x,y) pairs. | |||||||||||||||||
| |||||||||||||||||
| ▲ | LudwigNagasena 3 days ago | parent | prev | next [-] | ||||||||||||||||
OLS estimator is the minimum-variance linear unbiased estimator even without the assumption of Gaussian distribution. | |||||||||||||||||
| |||||||||||||||||
| ▲ | contravariant 3 days ago | parent | prev [-] | ||||||||||||||||
Both of these do, in a way. They just differ in which gaussian distribution they're fitting to. And how I suppose. PCA is effectively moment matching, least squares is max likelihood. These correspond to the two ways of minimizing the Kullback Leibler divergence to or from a gaussian distribution. | |||||||||||||||||