| ▲ | crystal_revenge 3 hours ago | |
I think the confusion is people's misunderstanding of what 'new code' and 'new imagery' mean. Yes, LLMs can generate a specific CRUD webapp that hasn't existed before but only based on interpolating between the history of existing CRUD webapps. I mean traditional Markov Chains can also produce 'new' text in the sense that "this exact text" hasn't been seen before, but nobody would argue that traditional Markov Chains aren't constrained by "only producing the past". This is even more clear in the case of diffusion models (which I personally love using, and have spent a lot of time researching). All of the "new" images created by even the most advanced diffusion models are fundamentally remixing past information. This is really obvious to anyone who has played around with these extensively because they really can't produce truly novel concepts. New concepts can be added by things like fine-tuning or use of LoRAs, but fundamentally you're still just remixing the past. LLMs are always doing some form of interpolation between different points in the past. Yes they can create a "new" SQL query, but it's just remixing from the SQL queries that have existed prior. This still makes them very useful because a lot of engineering work, including writing a custom text editor, involve remixing existing engineering work. If you could have stack-overflowed your way to an answer in the past, an LLM will be much superior. In fact, the phrase "CRUD" largely exists to point out that most webapps are fundamentally the same. A great example of this limitation in practice is the work that Terry Tao is doing with LLMs. One of the largest challenges in automated theorem proving is translating human proofs into the language of a theorem prover (often Lean these days). The challenge is that there is not very much Lean code currently available to LLMs (especially with the necessary context of the accompanying NL proof), so they struggle to correctly translate. Most of the research in this area is around improving LLM's representation of the mapping from human proofs to Lean proofs (btw, I personally feel like LLMs do have a reasonably good chance of providing major improvements in the space of formal theorem proving, in conjunction with languages like Lean, because the translation process is the biggest blocker to progress). When you say: > So it is absurdly incorrect to say "they can only reproduce the past." It's pretty clear you don't have a solid background in generative models, because this is fundamentally what they do: model an existing probability distribution and draw samples from that. LLMs are doing this for a massive amount of human text, which is why they do produce some impressive and useful results, but this is also a fundamental limitation. But a world where we used LLMs for the majority of work, would be a world with no fundamental breakthroughs. If you've read The Three Body Problem, it's very much like living in the world where scientific progress is impeded by sophons. In that world there is still some progress (especially with abundant energy), but it remains fundamentally and deeply limited. | ||
| ▲ | PeterHolzwarth 3 hours ago | parent | next [-] | |
Just an innocent bystander here, so forgive me, but I think the flack you are getting is because you appear to be responding to claims that these tools will reinvent everything and introduce a new halcyon age of creation - when, at least on hacker news, and definitely in this thread, no one is really making such claims. Put another way, and I hate to throw in the now over-used phrase, but I feel you may be responding to a strawman that doesn't much appear in the article or the discussion here: "Because these tools don't achieve a god-like level of novel perfection that no one is really promising here, I dismiss all this sorta crap." Especially when I think you are also admitting that the technology is a fairly useful tool on its own merits - a stance which I believe represents the bulk of the feelings that supporters of the tech here on HN are describing. I apologize if you feel I am putting unrepresentative words in your mouth, but this is the reading I am taking away from your comments. | ||
| ▲ | signatoremo 2 hours ago | parent | prev | next [-] | |
Lot of impressive points. They are also irrelevant. The majority of people also only extrapolate from the knowledge they acquired in the past. That’s why there is the concept of inventor, someone who comes up with new ideas. Many new inventions are also based on existing ideas. Is that the reason to dismiss those achievements? Do you only take LLM seriously if it can be another Einstein? > But a world where we used LLMs for the majority of work, would be a world with no fundamental breakthroughs. What do you consider recent fundamental breakthroughs? Even if you are right, human can continue to work on hard problems while letting LLM handle the majority of derivative work | ||
| ▲ | an hour ago | parent | prev | next [-] | |
| [deleted] | ||
| ▲ | uxcolumbo an hour ago | parent | prev | next [-] | |
How do human brains create something novel and what will it take for AIs to do the same? | ||
| ▲ | throwaway7783 3 hours ago | parent | prev [-] | |
Would you say that LLMs can discover patterns hitherto unknown? It would still be generating from the past, but patterns/connections not made before. | ||