Remix.run Logo
coder543 5 hours ago

> I'd rather place that 10K on a RTX Pro 6000 if I was choosing between them.

One RTX Pro 6000 is not going to be able to run GLM-4.7, so it's not really a choice if that is the goal.

bigyabai 4 hours ago | parent [-]

You definitely could, the RTX Pro 6000 has 96 (!!!) gigs of memory. You could load 2 experts at once at an MXFP4 quant, or one expert at FP8.

coder543 4 hours ago | parent [-]

No… that’s not how this works. 96GB sounds impressive on paper, but this model is far, far larger than that.

If you are running a REAP model (eliminating experts), then you are not running GLM-4.7 at that point — you’re running some other model which has poorly defined characteristics. If you are running GLM-4.7, you have to have all of the experts accessible. You don’t get to pick and choose.

If you have enough system RAM, you can offload some layers (not experts) to the GPU and keep the rest in system RAM, but the performance is asymptotically close to CPU-only. If you offload more than a handful of layers, then the GPU is mostly sitting around waiting for work. At which point, are you really running it “on” the RTX Pro 6000?

If you want to use RTX Pro 6000s to run GLM-4.7, then you really need 3 or 4 of them, which is a lot more than $10k.

And I don’t consider running a 1-bit superquant to be a valid thing here either. Much better off running a smaller model at that point. Quantization is often better than a smaller model, but only up to a point which that is beyond.

bigyabai 3 hours ago | parent [-]

You don't need a REAP-processed model to offload on a per-expert basis. All MoE models are inherently sparse, so you're only operating on a subset of activated layers when the prompt is being processed. It's more of a PCI bottleneck than a CPU one.

> And I don’t consider running a 1-bit superquant to be a valid thing here either.

I don't either. MXFP4 is scalar.

coder543 3 hours ago | parent [-]

Yes, you can offload random experts to the GPU, but it will still be activating experts that are on the CPU, completely tanking performance. It won't suddenly make things fast. One of these GPUs is not enough for this model.

You're better off prioritizing the offload of the KV cache and attention layers to the GPU than trying to offload a specific expert or two, but the performance loss I was talking about earlier still means you're not offloading enough for a 96GB GPU to make things how they need to be. You need multiple, or you need a Mac Studio.

If someone buys one of these $8000 GPUs to run GLM-4.7, they're going to be immensely disappointed. This is my point.

2 hours ago | parent [-]
[deleted]