| ▲ | jarjoura 2 hours ago | |
As of Dec 2025, Sonnet/Opus and GPTCodex are both trained and most good agent tools (ie. opencode, claude-code, codex) have prompts to fire off subagents during an exploration (use the word explore) and you should be able to Research without needing the extra steps of writing plans and resetting context. I'd save that expense unless you need some huge multi-step verifiable plan implemented. The biggest gotcha I found is that these LLMs love to assume that code is C/Python but just in your favorite language of choice. Instead of considering that something should be written encapsulated into an object to maintain state, it will instead write 5 functions, passing the state as parameters between each function. It will also consistently ignore most of the code around it, even if it could benefit from reading it to know what specifically could be reused. So you end up with copy-pasta code, and unstructured copy-pasta at best. The other gotcha is that claude usually ignores CLAUDE.md. So for me, I first prompt it to read it and then I prompt it to next explore. Then, with those two rules, it usually does a good job following my request to fix, or add a new feature, or whatever, all within a single context. These recent agents do a much better job of throwing away useless context. I do think the older models and agents get better results when writing things to a plan document, but I've noticed recent opus and sonnet usually end up just writing the same code to the plan document anyway. That usually ends up confusing itself because it can't connect it to the code around the changes as easily. | ||
| ▲ | indigodaddy an hour ago | parent [-] | |
Interesting, for me they almost always assume/write TS. | ||