Remix.run Logo
pron 3 hours ago

> Here's a LLM literacy dipstick: ask a peer engineer to read some code they're unfamiliar with. Do they understand it? ... No? Then the LLM won't either.

Of course, but the problem is the converse: There are too many situations where a peer engineer will know what to do but the agent won't. This means that it requires more work to make a codebase understandable to a human than it does to make it understandable to an agent.

> Moving more implementation feedback from human to computer helps us improve the chance of one-shotting... Think of these as bumper rails. You can increase the likelihood of an LLM reaching the bowling pins by making it impossible to land in the gutter.

Sort of, but this is also a little similar to claiming that P = NP. Having a an efficient way to reliably check if a solution is correct is not the same at all as a reliable way to find a solution. It's the theory of computation that tells us that it probably isn't. The likelihood may well be higher yet still not high enough. Even though theoretically NP problems are strictly easier than EXPTIME ones, in practice, in many situations (though not all) they are equally intractable.

In fact, we can put the claim to the test: there are languages, like ATS and Idris, that make almost any property provable and checkable. These languages let the programmer (human or machine) position the "bumper rails" so precisely as to ensure we hit the target. We can ask the agent to write the code, write the proof of correctness, and check it. We'd still need to check that the correctness property is the right one, but if the claim is correct, coding agents should be best at writing code, accompanied by correctness proofs, in ATS or Idris. Are they?

Obviously, mileage mauy vary dependning on the task and the domain, but if it's true that coding models will get significantly better, then the best course of action may well be, in many cases, to just wait until they do rather than spend a lot of effort working around their current limitations, effort that will be wasted if and when capabilities improve. And that's the big question: are we in for a long haul where agent capabilities remain roughly where they are today or not?