Remix.run Logo
sebastos a day ago

Right - but coming back to the original question, if I'm not mistaken, the explanation is that the blogpost is measuring information gained from an actual outcome, as opposed to _expected_ information gain. An example will help:

Say you're trying to guess the number on a 6-sided die that I've rolled. If I wanted to outright tell you the answer, that would be 2.58 bits of information I need to convey. But you're trying to guess it without me telling, so suppose you can ask a yes or no question about the outcome. The maximum of the _expected_ information add is 1 bit. If you ask "was it 4 or greater?", then that is an optimal question, because the expected information gain is min-maxed. That is, the minimum information you can gain is also the maximum: 1 bit. However, suppose you ask "was it a 5?". This is a bad question, because if the answer is no, there are still 5 numbers it could be. Plus, the likelihood of it being 'no' is high: 5/6. However, despite these downsides, it is true that 1/6 times, the answer WILL be yes, and you will gain all 2.58 bits of information in one go. The downside case more than counteracts this and preserves the rules of information theory: the _expected_ information gain is still < 1 bit.

EDIT: D'oh, nevermind. Re-reading the post, it's definitely talking about >1 bit expectations of potential matchings. So I don't know!