| ▲ | crystal_revenge 8 hours ago | |
> Because LLMs make it that much faster to develop software I feel as though "facts" such as this are presented to me all the time on HN, but in my every day job I encounter devs creating piles of slop that even the most die-hard AI enthusiasts in my office can't stand and have started to push against. I know, I know "they just don't know how to use LLMs the right way!!!", but all of the better engineers I know, the ones capable of quickly assessing the output of an LLM, tend to use LLMs much more sparingly in their code. Meanwhile the ones that never really understood software that well in the first place are the ones building agent-based Rube Goldberg machines that ultimately slow everyone down If we can continue living in the this AI hallucination for 5 more years, I think the only people capable of producing anything of use or value will be devs that continued to devote some of their free time to coding in languages like Gleam, and continued to maintain and sharpen their ability to understand and reason about code. | ||
| ▲ | Verdex 6 hours ago | parent [-] | |
This last week: * One developer tried to refactor a bunch of graph ql with an LLM and ended up checking in a bunch of completely broken code. Thankfully there were api tests. * One developer has an LLM making his PRs. He slurped up my unfinished branch, PRed it, and merged (!) it. One can only guess that the approved was also using an LLM. When I asked him why he did it, he was completely baffled and assured me he would never. Source control tells a different story. * And I forgot to turn off LLM auto complete after setting up my new machine. The LLM wouldn't stop hallucinating non-existent constructors for non-existent classes. Bog standard intellisense did in seconds what I needed after turning off LLM auto complete. LLMs sometimes save me some time. But overall I'm sitting at a pretty big amount of time wasted by them that the savings have not yet offset. | ||