| ▲ | energy123 an hour ago | |||||||
I think we are too quick to discount the possibility that this flaw is slightly intentional, in the sense that the optimization has a tight budget to work with (equivalent of ~3000 tokens) so why would it waste capacity on this when it could improve capabilities around reading small text in obscured images? Sort of like humans have all these rules of thumbs that backfire in all these ways but that's the energy efficient way to do things. | ||||||||
| ▲ | runarberg an hour ago | parent [-] | |||||||
Even so, that doesn’t take away from my point. Traditional specialized models can do these things already, for much cheaper and without expensive optimization. What traditional models cannot do is the toy aspect of LLM, and that is the only usecase I see for this technology going forward. Lets say you are right and these things will be optimized, and in, say, 5 years, most models from the big players will be able do things like reading small text in an obscure image, draw a picture of a glass of wine filled to the brim, draw a path through a maze, count the legs of a 5 footed dog, etc. And in doing so finished their last venture capital subsidies (bringing the actual cost of these to their customers). Why would people use LLMs for these when a traditional specialized model can do it for much cheaper? | ||||||||
| ||||||||