Remix.run Logo
zahllos 2 hours ago

The commentor means Dual_EC, a random number generator. The backdoor was patented under the form of "escrow" here: https://patents.google.com/patent/US8396213B2/en?oq=USOO83.9... - replace "escrow" with "backdoor" everywhere in the text and what was done will fall out.

ML-KEM/ML-DSA were adapted into standards by NIST, but I don't think a single American was involved in the actual initial design.

There might be some weakness the NSA knows about that the rest of us don't, but the fact they're going ahead and recommending these be used for US government systems suggests they're fine with it. Unless they want to risk this vulnerability also being discovered by China/Russia and used to read large portions of USG internet traffic. In their position I would not be confident that if I was aware of a vulnerability it would remain secret, although I am not a US Citizen or even resident, and never have been.

johncolanduoni an hour ago | parent [-]

Not that I think this is the case for this algorithm, but backdoors like the one in Dual_EC cannot be used by a third party without what is effectively reversing an asymmetric key pair. Their public parameters are the product of private parameters that the NSA potentially has, but if China or whoever can calculate the private parameters from the public ones it’s broken regardless.

zahllos an hour ago | parent [-]

Indeed. Dual_EC was a NOBUS backdoor relying on the ECDLP. That's fair.

My point was more that it looked suspicious at the time (why use a trapdoor in a CSPRNG) and at least the possibility of "escrow" was known, as evidenced by the fact that Vanstone (one of the inventors of elliptic curve cryptography) patented said backdoor around 2006.

This suspiciousness simply doesn't apply to ML-KEM, if one ignores one very specific cryptographer.