| ▲ | gunnarmorling 6 hours ago | |
I'm still swinging back and forth which approach I ultimately prefer. As stated in the post, I like how the proxy approach largely avoids any API dependency. I'd also argue that Java developers actually are very familiar with this kind of implicit enrichment of behaviors and execution semantics (e.g. transaction management is weaved into applications that way in Spring or Quarkus applications). But there's also limits to this in regards to flexibility. For example, if you wanted to delay a method for a dynamically determined period of time, rather than for a fixed time, the annotation-based approach would fall short. | ||
| ▲ | kodablah 6 hours ago | parent [-] | |
At Temporal, for Java we did a hybrid approach of what you have. Specifically, we do the java.lang.reflect.Proxy approach, but the user has to make a call instantiating it from the implementation. This allows users to provide those options at proxy creation time and not require they configure a build step. I can't speak for all JVM people, but I get nervous if I have to use a library that requires an agent or annotation processor. Also, since Temporal activity invocations are (often) remote, many times a user may only have the definition/contract of the "step" (aka activity in Temporal parlance) without a body. Finally, many times users _start_ the "step", not just _execute_ it, which means it needs to return a promise/future/task. Sure this can be wrapped in a suspended virtual thread, but it makes reasoning about things like cancellation harder, and from a client-not-workflow POV, it makes it harder to reattach to an invocation in a type-safe way to, say, wait for the result of something started elsewhere. We did the same proxying approach for TypeScript, but we saw as we got to Python, .NET, and Ruby that being able to _reference_ a "step" while also providing options and having many overloads/approaches of invoking that step has benefits. | ||