Remix.run Logo
johnisgood a day ago

This Turing completeness equivalence is misleading. While all Turing-complete systems can theoretically compute the same class of functions, this says nothing about computational complexity, physical constraints, practical achievability in finite time, or the actual algorithms required. A Turing machine that can theoretically simulate a brain does not mean we know how to do it or that it is even feasible. This is like arguing that because weather systems and computers both follow physical laws, you should be able to perfectly simulate weather on your laptop.

Additionally, "No mechanism to exceed Turing computable" is a non-sequitur. Even granting that brains do not perform hypercomputation, this does not support your conclusion that artificial systems are "computationally equivalent" to brains in any practical sense. We would need: (1) complete understanding of brain algorithms, (2) the actual data/weights encoded in neural structures, (3) sufficient computational resources, and (4) correct implementation. None of these follow from Turing completeness alone, I believe.

More importantly, you completely dodged the actual point about intuition. Jensson's point is about evolutionary encoding vs. learned knowledge. Intuition represents millions of years of evolved optimization encoded in brain structure and chemistry. You acknowledge this ("knowledge encoded in physical structure") but then pivot to an irrelevant theoretical CS argument rather than addressing whether we can actually replicate such evolutionary knowledge in artificial systems.

Your original claim was "If they are not derived from past experience or knowledge" which creates a false dichotomy. Animals are born with innate knowledge encoded through evolutionary optimization. This is not learned from individual experience, yet it is still knowledge, specifically, it is millions of years of selection pressure encoded in neural architecture, reflexes, instincts, and cognitive biases.

So, for example: a newborn animal has never experienced a predator but knows to freeze or flee from certain stimuli. It has built-in heuristics for threat assessment, social behavior, spatial reasoning, and countless other domains that cost generations to develop through survival pressure.

Current AI systems lack this evolutionary substrate. They are trained on human data over weeks or months, not evolved over millions of years. We do not even know how to encode this type of knowledge artificially or even fully understand what knowledge is encoded in biological systems. Turing completeness does not bridge this gap any more than it bridges the gap between a Turing machine and actual weather.

Correct me if I'm misinterpreting your argument.

alansammarone 14 hours ago | parent [-]

I...I am very interested in this subject. There's a lot to unpack in your comment, but I think it's really pretty simple.

> this does not support your conclusion that artificial systems are "computationally equivalent" to brains in any practical sense.

You're making a point about engineering or practicality, and in that sense, you are absolutely correct.

That's not the most interesting part of the question, however.

> This is like arguing that because weather systems and computers both follow physical laws, you should be able to perfectly simulate weather on your laptop.

Yes, that's exactly what I'd argue, and...hm.. yes, I think that's clearly true. Whether it takes 10 minutes or 10^100 minutes, 1~ or 10^100 human lifetimes to do so, it's irrelevant. Units (including human lifetimes) are arbitrary, and I think fundamental truths probably won't depend on such arbitrary things as how long a particular collection of atoms in a particular corner of the universe (i.e. humans) happens to be stable for. Ratios are closer to being fundamental, but I digress.

To put it a different way - we think we know what the speed of light is. Traveling at v = 0.1c or at v = (1 - 10^(-100))c are equivalent in a fundamental sense, it's an engineering problem. Now, traveling at v = c...that's very different. That's interesting.