| ▲ | simianwords 5 hours ago | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> Compaction enables GPT‑5.1-Codex-Max to complete tasks that would have previously failed due to context-window limits, such as complex refactors and long-running agent loops by pruning its history while preserving the most important context over long horizons. In Codex applications, GPT‑5.1-Codex-Max automatically compacts its session when it approaches its context window limit, giving it a fresh context window. It repeats this process until the task is completed. Wouldn't the model automatically do that using attention techniques? Why do you need to do it at the token layer and not leave it to the model to automatically decide which tokens are worth paying attention to? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ▲ | adastra22 5 hours ago | parent | next [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Attention is quadratic, so you have to pick a cutoff for context window size. In addition, the error/noise in state space increases with longer contexts, resulting in poorer performance. So even if you're willing to take the O(n^2) slowdown of a larger context window, it still won't work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ▲ | qsort 5 hours ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> due to context-window limits | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||