| ▲ | counters 7 hours ago | |
I mean - you don't need any ML for that. Just go grab random samples from a ~30 day window centered on your day of interest over the region of interest from a reanalysis product like ERA5. If the duration of ERA5 isn't sufficient (e.g. you wouldn't expect on average to see events with a >100 year return period given the limited temporal extent of the dataset) then you could take one step further and pull from an equilibrium climate model simulation - some of these are published as part of the CMIP inter-comparison, or you could go to special-built ensembles like the CESM LENS [1]. You could also use a generative climate downscaling model like NVIDIA's Climate-in-a-bottle, but that's almost certainly overkill for your application. | ||