| ▲ | SethTro 9 hours ago | ||||||||||||||||||||||||||||||||||
I wrote Problem 371, https://projecteuler.net/problem=371 , as a high school student in 2012! I'm so happy to have spent twenty years of my life learning math and solving problems on Project Euler and elsewhere. | |||||||||||||||||||||||||||||||||||
| ▲ | am17an 7 hours ago | parent | next [-] | ||||||||||||||||||||||||||||||||||
This is one of my favourite problems, I still remember that it has a very real edge case even though I solved it more than 10 years ago. Thank you for the problem! | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| ▲ | stevefan1999 5 hours ago | parent | prev | next [-] | ||||||||||||||||||||||||||||||||||
That sounds like a combinatorial problem...alphabets from AAA to ZZZ, numbers from 000 to 999. That means one of the total sum of possible car plates is 26^3. Since we want to find pairs (x, y) that x + y = 1000. That means the total sum would also add up sum([1 for x in range(1000) for y in range(1000) if x + y == 1000])/2 since there is a symmetry. But wait, find the expected number of plates he needs to see for a win. So maybe we need to borrow something from statistics (Possion/chi-squared distribution) or queueing theory...? Edit: ah I saw the solution, it is a Markov chain. | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| ▲ | dekhn 8 hours ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||
Interesting- I ask a license plate question (when will california run out of plates in its current serialization format, based on a couple of plates observed in two different years). It's a much simpler question, though (just linear extrapolation). | |||||||||||||||||||||||||||||||||||