▲ | robotresearcher a day ago | |||||||||||||||||||||||||||||||
I have. It robustly has the folk-psychological meaning I mentioned in my first sentence. Call it ‘philosophical’ instead of ‘folk-psychological’ if you like. It’s a useful concept. But the concept doesn’t require AI engineers to do anything. It certainly doesn’t give any hints about AI engineers what they should actually do. “Make it understand.” “How? What does that look like?” “… But it needs to understand…” “It answers your questions.” “But it doesn’t understand.” “Ok. Get back to me when that entails anything.” | ||||||||||||||||||||||||||||||||
▲ | mommys_little a day ago | parent | next [-] | |||||||||||||||||||||||||||||||
I would say it understands if given many variations of a problem statement, it always gives correct answer without fail. I have this complicated mirror question that only Deepseek and qwen3-max got right every time, still they only answered it correctly about a dozen times, so we're left with high probability, I guess. | ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
▲ | robomartin a day ago | parent | prev [-] | |||||||||||||||||||||||||||||||
I have been thinking about this for years, probably two decades. The answer to your question or the definition, I am sure you know, is rather difficult. I don't think it is impossible, but there's a risk of diving into a deep dark pit of philosophical thought going back to at least the ancient Greeks. And, if we did go through that exercise, I doubt we can come out of it with a canonical definition of understanding. I was really excited about LLM's as they surfaced and developed. I fully embraced the technology and have been using it extensively with full top-tier subscriptions to most services. My conclusion so far: If you want to destroy your business, adopt LLM's with gusto. I know that's a statement that goes way against the train ride we are on this very moment. That's not to say LLM's are not useful. They are. Very much so. The problem is...well...they don't understand. And here I am, back in a circular argument. I can define understanding with the "I know it when I see it" meme. And, frankly, it does apply. Yet, that's not a definition. We've all experienced that stare when talking to someone who does not have sufficient depth of understanding in a topic. Some of us have experienced people running teams who should not be in that position because they don't have a clue, they don't understand enough of it to be effective at what they do. And yet, I still have not defined "understanding". Well, it's hard. And I am not a philosopher, I am an engineer working in robotics, AI and applications to real time video processing. I have written about my experiments using LLM coding tools (I refuse to call them AI, they are NOT intelligent; yes, need to define that as well). In that context, lack of understanding is clearly evident when an LLM utterly destroys your codebase by adding dozens of irrelevant and unnecessary tests, randomly changes variable names as you navigate the development workflow, adds modules like a drunken high school coder and takes you down tangents that would make for great comedy if I were a tech comedian. LLMs do not understand. They are fancy --and quite useful-- auto-complete engines and that's about it. Other than that, buyer beware. The experiments I ran, some of them spanning three months of LLM-collaborative coding at various levels --from very hands-on to "let Jesus drive the car"-- conclusively demonstrated (at least to me) that: 1- No company should allow anyone to use LLMs unless they have enough domain expertise to be able to fully evaluate the output. And you should require that they fully evaluate and verify the work product before using it for anything; email, code, marketing, etc. 2- No company should trust anything coming out of an LLM, not one bit. Because, well, they don't understand. I recently tried to use the United Airlines LLM agent to change a flight. It was a combination of tragic and hilarious. Now, I know what's going on. I cannot possibly imagine the wild rides this thing is taking non-techies on every day. It's shit. It does not understand. It' isn't isolated to United Airlines, it's everywhere LLMs are being used. The potential for great damage is always there. 3- They can be great for summarization tasks. For example, you have have them help you dive deep into 300 page AMD/Xilinx FPGA datasheet or application note and help you get mentally situated. They can be great at helping you find prior art for patents. Yet, still, because they are mindless parrots, you should not trust any of it. 4- Nobody should give LLMs great access to a non-trivial codebase. This is almost guaranteed to cause destruction and hidden future effects. In my experiments I have experienced an LLM breaking unrelated code that worked just fine --in some cases fully erasing the code without telling you. Ten commits later you discover that your network stack doesn't work or isn't even there. Or, you might discover that the stack is there but the LLM changed class, variable or method names, maybe even data structures. It's a mindless parrot. I could go on. One response to this could be "Well, idiot, you need better prompts!". That, of course, assumes that part of my experimentation did not include testing prompts of varying complexity and length. I found that for some tasks, you get better results by explaining what you want and then asking the LLM to write a prompt to get that result. You check that prompt, modify if necessary and, from my experience, you are likely to get better results. Of course, the reply to "you need better prompts" is easy: If the LLM understood, prompt quality would not be a problem at all and pages-long prompts would not be necessary. I should not have to specify that existing class, variable and method names should not be modified. Or that interfaces should be protected. Or that data structures need not be modified without reason and unless approved by me. Etc. It reminds me of a project I was given when I was a young engineer barely out of university. My boss, the VP of Engineering where I worked, needed me to design a custom device. Think of it as a specialized high speed data router with multiple sources, destinations and a software layer to control it all. I had to design the electronics, circuit boards, mechanical and write all the software. The project had a budget of nearly a million dollars. He brought me into his office and handed me a single sheet of paper with a top-level functional diagram. Inputs, outputs, interfaces. We had a half hour discussion about objectives and required timeline. He asked me if I could get it done. I said yet. He checked in with me every three months or so. I never needed anything more than that single piece of paper and the short initial conversation because I understood what we needed, what he wanted, how that related to our other systems, available technology, my own capabilities and failings, available tools, etc. It took me a year to deliver. It worked out of the box. You cannot do that with LLMs because they don't understand anything at all. They mimic what some might confuse for understanding, but they do not. And, yet, once again, I have not defined the term. I think everyone reading this who has used LLMs to a non-trivial depth...well...understands what I mean. | ||||||||||||||||||||||||||||||||
|