Remix.run Logo
larodi 8 hours ago

Somehow I dont see this applicable for 90% of all current spatial needs, where PostGIS does just right, and same IMHO goes for DuckDB. There perhaps exists 10% of business where data is so immense you want to hit it with Rust & whatnot, but all others do just fine im Postgre.

My bet is most of actually useful spatial ST_ functions are not implemented in this one, as they are not in the DuckDB offering.

mattforrest 7 hours ago | parent [-]

I wrote a book on PostGIS and used it for years and these single node analytical tools make sense when PostGIS performance starts to break down. For many tasks PostGIS works great, but again you are limited by the fact that your tables have to live in the DB and can only scale as much as the computing resources you have allocated.

In terms of number of functions PostGIS is still the leader, but for analytical functions (spatial relationships, distances, etc) having those in place in these systems is important. DuckDB started this but this has a spatial focused engine. You can use the two together, PostGIS for transactional processing and queries, and then SedonaDB for processing and data prep.

A combination of tools makes a lot of sense here especially as the data starts to grow.

th0ma5 7 hours ago | parent [-]

I think this is a great perspective in my professional experience it was very common to be using multiple tools. ESRI for some things, GDAL for others, and then some hacks here and there like most complex analytical systems. Some of it vendor shenanigans but some of it is specific features.