▲ | cpldcpu 3 days ago | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I believe the argument is that you can also encode information in the time domain. If we just look at spikes as a different numerical representation, then they are clearly inferior. For example, consider that encoding the number 7 will require seven consecutive pulses on a single spiking line. Encoding the number in binary will require one pulse on three parallel lines. Binary encoding wins 7x in speed and 7/3=2.333x in power efficiency... On the other hand, if we assume that we are able to encode information in the gaps between pulses, then things quickly change. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | HarHarVeryFunny 3 days ago | parent | next [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I think the main benefit of a neuromorphic design would be to make it dataflow driven (asynchronous event driven - don't update neuron outputs unless their inputs change) rather than synchronous, which is the big power efficiency unlock. This doesn't need to imply a spiking design though - that seems more of an implementation detail, at least as far as dataflow goes. Nature seems to use spike firing rates to encode activation strength. In the brain the relative timing/ordering of different neurons asynchronously activating (A before B, or B before A) is also used (spike-timing-dependent plasticity - STDP) as a learning signal to strengthen or weaken connection strengths, presumably to learn sequence prediction in this asynchronous environment. STDP also doesn't imply that spikes or single neuron spike train inter-spike timings are necessary - an activation event with a strength and timestamp would seem to be enough to implement a digital dataflow design, although ultimately a custom analog design may be more efficient. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | dist-epoch 3 days ago | parent | prev | next [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
> you can also encode information in the time domain. Also known as a serial interface. They are very successful: PCIe lane, SATA, USB. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | nickpsecurity 3 days ago | parent | prev | next [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"I believe the argument is that you can also encode information in the time domain." Brain research showed that's happening, too. You'll see many models like this if you DuckDuckGo for "spiking" "temporal" "encoding" or subtitute "time" for temporal. You can further use "neural" "network" or "brain" focus it on sub-fields. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | CuriouslyC 3 days ago | parent | prev [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
https://en.wikipedia.org/wiki/Frequency-division_multiplexin... The brain is doing shit like this. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|