▲ | taeric 4 days ago | ||||||||||||||||
The annoying thing is this sits with my teaching fine, it is more my intuition that is failing to withstand trying to break it. :( So, in the original: "a family has two children. You're told at least one of them is a girl." What are the possible states? Well, assume first born is the girl, then you have 50% that the next is a girl. Then, assume that the first born was a boy, then there is no chance and the second born is the girl that you know of. So, at 50/50 on those chances, you have 50% chance of having a 50% chance, or a 50% chance of it being 0. I can't see how to combine those to get 1/3. :( And the Monty Hall explicitly covers the case that a decision is made on which door is shown to you. I don't see any similar framing to this problem. Yes, the total states are GB, BG, GG, but only if you treat GG in such a way that either BG or GB was not a possible state. (That is, using G for girl that you know of, and g for unknown, then possible states are GB, Gg, gG, BG. There is no version of Bg or gB that is possible, so to treat those as equal strikes me as problematic.) | |||||||||||||||||
▲ | AIPedant 4 days ago | parent [-] | ||||||||||||||||
Where you're getting confused is by trying to combine state space determination and probability determination at the same time (this is also why the problem is so similar to Monty Hall). The state space is shifting when you say "assume X, then the probability of Y." You are going back and forth between using and not using the information to decide arbitrarily that some probabilities are 50% and others are 0%, which leads to an invalid conclusion. Specifically: it is not true that the firstborn has a 50-50 chance of being a girl, given you were told that the family has at least one girl. The firstborn has a 2/3rds chance of being a girl. This is the heart of your confusion. In a broader sense there is an entire class of confusing conditional probability problems like this. Events which are causally independent in reality (e.g. gender of a child, which door Monty Hall hid the car behind) fail to be probabilistically independent when you have extra information. Yet these probability games are contrived in a way that our intuition takes over and we use our causal understanding even when a better probabilistic understanding gives you a better answer. | |||||||||||||||||
|