▲ | segmondy 3 days ago | ||||||||||||||||||||||
if you are running a 2bit quant, you are not giving up performance but gaining 100% performance since the alternative is usually 0%. Smaller quants are for folks who won't be able to run anything at all, so you run the largest you can run relative to your hardware. I for instance often ran Q3_K_L, I don't think of how much performance I'm giving up, but rather how without Q3, I won't be able to run it at all. With that said, for R1, I did some tests against 2 public interfaces and my local Q3 crushed them. The problem with a lot of model providers is we can never be sure what they are serving up and could take shortcuts to maximize profit. | |||||||||||||||||||||||
▲ | linuxftw 3 days ago | parent | next [-] | ||||||||||||||||||||||
That's true only in a vacuum. For example, should I run gpt-oss-20b unquantized or gpt-oss-120b quantaized? Some models have a 70b/30b spread, and that's only across a single base model, where many different models exist at different quants could be compared for different tasks. | |||||||||||||||||||||||
| |||||||||||||||||||||||
▲ | danielhanchen 3 days ago | parent | prev [-] | ||||||||||||||||||||||
Oh Q3_K_L as in upcasted embed_tokens + lm_head to Q8_0? I normally do Q4 embed Q6 lm_head - would a Q8_0 be interesting? |