▲ | doorhammer 3 days ago | |||||||||||||||||||||||||
Again, not the OP, so I can't speak to exactly their use-case, but the vast majority of call center calls fall into really clear buckets. To give you an idea: Phonetic transcription was the "state of the art" when I was a QA analyst. It broke call transcripts apart into a stream of phonemes and when you did a search, it would similarly convert your search into a string of phonemes, then look for a match. As you can imagine, this is pretty error prone and you have to get a little clever with it, but realistically, it was more than good enough for the scale we operated at. If it were an ecom site you'd already know the categories of calls you're interested in because you've been doing that tracking manually for years. Maybe something like "late delivery", "broken item", "unexpected out of stock", "missing pieces", etc. Basically, you'd have a lot of known context to anchor the llms analysis, which would (probably) cover the vast majority of your calls, leaving you freed up to interact with outliers more directly. At work as a software dev, having an LLM summarize a meeting incorrectly can be really really bad, so I appreciate the point you're making, but at a call center for an f500 company you're looking for trends and you're aware of your false positive/negative rates. Realistically, those can be relatively high and still provide a lot of value. Also, if it's a really large company, they almost certainly had someone validate the calls, second-by-second, against the summaries (I know because that was my job for a period of time). That's a minimum bar for _any_ call analysis software so you can justify the spend. Sure, it's possible that was hand-waved, but as the person responsible for the outcome of the new summarization technique with LLMs, you'd be really screwing yourself to handwave a product that made you measurably less effective. There are better ways to integrate the AI hype train into a QA department than replacing the foundation of your analysis, if that's all you're trying to do. | ||||||||||||||||||||||||||
▲ | sillyfluke 3 days ago | parent | next [-] | |||||||||||||||||||||||||
Thanks for the detailed domain-specific explanation, if we assume that some whale clients of the company will end up in the call center is it not more probable that more competent human agents will be responsible for the call, whereas it's pretty much the same AI agent adressing the whale client as the regular customers in the alternative scenario? | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
▲ | Imustaskforhelp 3 days ago | parent | prev [-] | |||||||||||||||||||||||||
I genuinely don't think that the GP is actually making someone actually listen to the transcription and summary and check if the summary is wrong. I almost have this gut feeling that its the case (I may be wrong though) Like imagine this, if the agent could just spend 3 minutes writing a summary, why would you use AI to create a summary and then have some other person listen to the whole audio recording and check if the summary is right like it would take an agent 3 minutes out of lets say a 1 hour long conversation / (call?) on the other hand you have someone listen to 1 hour whole recording and then check the summary? that's now 1 hour compared to 3 minutes Nah, I don't think so. Even if we assume that multiple agents are contacted in the same call, they can all simply write the summary of what they did and to whom they redirected and just follow that line of summaries. And after this, I think that your summary of seeing that they are really screwing away is accurately true. Kinda funny how the gp comment was the first thing that I saw in this post and how even I was kinda convinced that they are one of the more smarter ones integrating AI but your comment made me come to realization of them actually just screwing themselves. Imagine the irony, that a post about how AI companies are screwing themselves by burning a lot of money and then the people using them don't get any value out of it. And then the one on Hn that sounded like it finally made sense for them is also not making sense... and they are screwing over themselves. The irony is just ridiculous. So funny it made me giggle | ||||||||||||||||||||||||||
|