▲ | doorhammer 3 days ago | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Sentiment analysis, nuanced categorization by issue, detecting new issues, tracking trends, etc, are the bread and butter of any data team at a f500 call center. I'm not going to say every project born out of that data makes good business sense (big enough companies have fluff everywhere), but ime anyway, projects grounded to that kind of data are typically some of the most straight-forward to concretely tie to a dollar value outcome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | la_fayette 3 days ago | parent | next [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Yes that sound like important and useful use cases. However, these are solved by boring old school ML models since years... | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | adrr 3 days ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Those have been done for 10+ years. We were running sentiment analysis on email support to determine prioritization back in 2013. Also ran bayesian categorization to offer support reps quick responses/actions. Don't need expensive LLMs it. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
|