▲ | jethkl 5 days ago | |||||||||||||
There is an analogue of the CLT for extreme values. The Fisher–Tippett–Gnedenko theorem is the extreme-values analogue of the CLT: if the properly normalized maximum of an i.i.d. sample converges, it must be Gumbel, Fréchet, or Weibull—unified as the Generalized Extreme Value distribution. Unlike the CLT, whose assumptions (in my experience) rarely hold in practice, this result is extremely general and underpins methods like wavelet thresholding and signal denoising—easy to demonstrate with a quick simulation. | ||||||||||||||
▲ | kqr 5 days ago | parent [-] | |||||||||||||
There's also a more conservative rule similar to the CLT that works off of the definition of variance, and thus rests on no assumptions other than the existence of variance. Chebyshev's inequality tells us that the probability that any sample is more than k standard deviations away is bounded by 1/k². In other words, it is possible (given sufficiently weird distributions) that not a single sample lands inside one standard deviation, but 75% of them must be inside two standard deviations, 88% inside three standard deviations, and so on. There's also a one-sided version of it (Cantelli's inequality) which bounds the probability of any sample by 1/(1+k)², meaning at least 75 % of samples must be less than one standard deviation, 88% less than two standard deviations, etc. Think of this during the next financial crisis when bank people no doubt will say they encountered "six sigma daily movements which should happen only once every hundred million years!!" or whatever. According to the CLT, sure, but for sufficiently odd distributions the Cantelli bound might be a more useful guide, and it says six sigma daily movements could happen as often as every fifty days. | ||||||||||||||
|