▲ | bubblyworld 10 days ago | |||||||
Formalising natural language statements is a minefield of difficulties, for (imo) essentially the same reasons that writing code which interacts with the real world is so difficult. Concepts you take for granted like identity, time, causality... all of that stuff needs to be fleshed out carefully and precisely in the formalism for facts to be relatable to each other (or even expressible in the first place). Not to discourage you - it's a cool problem! OpenCog comes to mind as a project that tried to take this all the way, and there's a field devoted to this stuff in academia called KRR (knowledge representation and reasoning). The IJCAI journal is full of research on similar topics. (also see all the different logics philosophers use to formalise different kinds of argument involving time/modality/probability - there are a lot, but they aren't very "modular" and can't easily be mixed unless someone has solved that since I last looked into it) | ||||||||
▲ | eru 10 days ago | parent | next [-] | |||||||
> Concepts you take for granted like identity, time, causality... all of that stuff needs to be fleshed out carefully and precisely in the formalism for facts to be relatable to each other (or even expressible in the first place). Yes, and different formalisations of identity apply in different contexts. Eg remember the famous line about not being able to step in the same river twice. | ||||||||
▲ | photonthug 10 days ago | parent | prev | next [-] | |||||||
> logics philosophers use .. aren't very "modular" and can't easily be mixed Not sure if the model-checking communities would agree with you there. For example CTL-star [0] mixes tree-logic and linear-temporal, then PCTL adds probability on top. Knowledge, belief, and strategy-logics are also mixed pretty freely in at least some model checkers. Using mixed combinations of different-flavored logic does seem to be going OK in practice, but I guess this works best when those diverse logics can all be reduced towards the same primitive data structures that you want to actually crunch (like binary decision diagrams, or whatever). If no primitive/fast/generic structure can really be shared between logics, then you may be stuck with some irreconcilable continuous-vs-discrete or deterministic-vs-probabilistic disconnect, and then require multiple model-checkers for different pieces of one problem. So even if mixing different flavors of logics is already routine.. there's lots of improvements to hope for if practically everything can be directly represented in one place like lean. Just like mathematicians don't worry much about switching back and forth from geometry/algebra, less friction between representations would be great. Speaking of CTL, shout out to Emerson[1], who won a Turing award. If he hadn't died recently, I think he'd be surprised to hear anyone suggest he was a philosopher instead of a computer scientist ;) [0]: https://en.wikipedia.org/wiki/CTL* [1]: https://en.wikipedia.org/wiki/E._Allen_Emerson | ||||||||
| ||||||||
▲ | zozbot234 10 days ago | parent | prev [-] | |||||||
> (also see all the different logics philosophers use to formalise different kinds of argument involving time/modality/probability - there are a lot, but they aren't very "modular" and can't easily be mixed unless someone has solved that since I last looked into it) From a logic-as-types perspective, modalities turn out to be monads. So the problem of "mixing" modalities is quite similar to the problem of composing monads in programming languages. | ||||||||
|