▲ | nowittyusername 10 days ago | ||||||||||||||||||||||||||||||||||||||||||||||
I wonder suppose you are not relying on any tricks or funky shenanigans. is it possible to just throw random stuff at Lean and find interesting observations based if it approves? like use an automated system or an llm that tries all types of wild proofs/theories? and sees if it works? maybe im asking wrong questions though or not stating it well.. this is above my understanding, i could barely get my head around prolog. | |||||||||||||||||||||||||||||||||||||||||||||||
▲ | Paracompact 10 days ago | parent | next [-] | ||||||||||||||||||||||||||||||||||||||||||||||
As someone who does certified programming professionally, I believe generative AI and formal methods are a match made in heaven. I might even go so far as to wager that the notion that human programmers will or will not be replaced by LLM-based AI is entirely dependent on whether these AI can get good at certified programming + compositional reasoning. > is it possible to just throw random stuff at Lean and find interesting observations based if it approves? Traditional AI has an easy time with checkers, because the search space is small. Chess is a little harder. Go still cannot be reasonably tackled by non-machine learning AI. Meanwhile, the search space (number of available moves together with the diversity of explorable states) for a sophisticated formal language becomes unfathomably large. When the problem is known to be of a certain nature, often you can time-efficiently brute force it via SMT solvers. Traditionally SMT solvers and proof assistants have been separate branches of formal methods, but they're finally learning to play off each other's strengths (cf. Sledgehammer, Lean-SMT). > like use an automated system or an llm that tries all types of wild proofs/theories? and sees if it works? Research in this vein needs to be made more mainstream. I'm excited, though, that there have been big funders behind these ideas for years now, even before LLMs became big. Cf. "Learning to Find Proofs and Theorems by Learning to Refine Search Strategies" for earlier work, or DeepSeek-Prover for more recent attempts. I'm no machine learning expert, but it seems it's still a very open question how to best train these things and what their future potential is. All in all mainstream LLMs are still rather mediocre at languages like Rocq and Lean. And when they're wrong, their proof scripts are extremely tedious to try to troubleshoot and correct. But I have hope AI tooling in formal methods will mature greatly over time. | |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
▲ | danabramov 10 days ago | parent | prev [-] | ||||||||||||||||||||||||||||||||||||||||||||||
This is an active area of research and experimentation! Much of Lean community are on Zulip (which is kind of like a forum?) and you can see many relevant threads here: https://leanprover.zulipchat.com/#narrow/channel/219941-Mach... |