▲ | bubblyworld 4 days ago | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Have you spent much time with the ARC-1 challenge? Their results on that are extremely compelling, showing results close to the initial competition's SOTA (as of closing anyway) with a tiny model and no hacks like data augmentation, pretraining, etc that all of the winning approaches leaned on heavily. Your criticism makes sense for the maze solving and sudoku sets, of course, but I think it kinda misses the point (there are traditional algos that solve those just fine - it's more about the ability of neural nets to figure them out during training, and known issues with existing recurrent architectures). Assuming this isn't fake news lol. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | smokel 4 days ago | parent | next [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Looking at the code, there is a lot of data augmentation going on there. For the Sudoku and ARC data sets, they augment every example by a factor of 1,000. https://github.com/sapientinc/HRM/blob/main/dataset/build_ar... | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
▲ | sigmoid10 4 days ago | parent | prev [-] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As the other commenter already pointed out, I'll believe it when I see it on the leaderboard. But even then it already lost twice against the winner of last year's competition, because that too was a general purpose LLM that could also do other things. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|