> It's been already demonstrated that Shor's algorithm works on real hardware.
No, there was no such demonstration.
Quote from https://eprint.iacr.org/2015/1018.pdf:
As pointed out in [57], there has never been a genuine implementation of Shor’s algorithm. The only numbers ever to have been factored by that type of algorithm are 15 and 21, and those factorizations used a simplified version of Shor’s algorithm that requires one to know the factorization in advance. In [13,15] the authors describe how a different algorithm that converts integer factorization to an optimization problem can be used to factor significantly larger integers (without using advance knowledge of the factors). However, the optimization problem is NP-hard and so presumably cannot be solved in polynomial time on a quantum computer, and it is not known whether or not the sub-problem to which integer factorization reduces can be solved efficiently at scale. So most experts in the field prefer to gauge progress in quantum computing not by the size of numbers factored (which would lead to a very pessimistic prognosis), but rather by certain engineering benchmarks, such as coherence time and gate fidelity.