Remix.run Logo
douglasisshiny a day ago

It's been refreshing to read these perspectives as a person who has given up on using LLMs. I think there's a lot of delusion going on right now. I can't tell you how many times I've read that LLMs are huge productivity boosters (specifically for developers) without a shred of data/evidence.

On the contrary, I started to rely on them despite them constantly providing incorrect, incoherent answers. Perhaps they can spit out a basic react app from scratch, but I'm working on large code bases, not TODO apps. And the thing is, for the year+ I used them, I got worse as a developer. Using them hampered me learning another language I needed for my job (my fault; but I relied on LLMs vs. reading docs and experimenting myself, which I assume a lot of people do, even experienced devs).

martinsnow a day ago | parent | next [-]

When you get outside the scope of a cruddy app, they fall apart. Trouble is that business only see crud until we as developers have to fill in complex states and that's when hell breaks loose because who tought of that? Certainty not your army of frontend and backend engineers who warned you about this for months on end.....

The future will be of broken UIs and incomplete emails of "I don't know what to do here"..

fhd2 a day ago | parent | prev [-]

The sad part is that there is a _lot_ of stuff we can now do with LLMs, that were practically impossible before. And with all the hype, it takes some effort, at least for me, to not get burned out on all that and stay curious about them.

My opinion is that you just need to be really deliberate in what you use them for. Any workflow that requires human review because precision and responsibility matters leads to the irony of automation: The human in the loop gets bored, especially if the success rate is high, and misses flaws they were meant to react to. Like safety drivers for self driving car testing: A both incredibly intense and incredibly boring job that is very difficult to do well.

Staying in that analogy, driver assist systems that generally keep the driver on the well, engaged and entertained are more effective. Designing software like that is difficult. Development tooling is just one use case, but we could build such _amazingly_ useful features powered by LLMs. Instead, what I see most people build, vibe coding and agentic tools, run right into the ironies of automation.

But well, however it plays out, this too shall pass.