Remix.run Logo
woolion 8 hours ago

Nobody argues about the result of an addition because the computation is mechanistically verifiable. Same with statements that are properly formalized in logic. The goal was to have the same for all of mathematics. So incompleteness is not a problem per se -- even if it shook people so much at the time (because proof theory always work within a given system). Incompleteness is the battery ram that is used to break the walls of common sense.

If incompleteness isn't the killer of the Hilbert program, what is? The axiom of choice and the continuum hypothesis. Both lack any form of naturalness that would prevent any philosophical arguing. Worse, not accepting them also do. There is such a wealth of intuitionistically absurd results implied by these systems -- most famously, there is the joke that “The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?”, when these 3 statements are _logically_ equivalent. So, we're back to a mathematical form of epistemological anarchism; there is no universal axiomatic basis for doing mathematics; any justification for the use of one has to be found externally to mathematics.

hackandthink 4 hours ago | parent [-]

I would add that there is/was a certain desire for categorical theories.

"In mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism)."

(categorical is stronger than complete)