▲ | jsmeaton 6 hours ago | |
Perceived only at this stage, though the kind of volume we’re looking at is 10s to 100s of millions of jobs per day. https://github.com/riverqueue/river/issues/746 talks about some of the same things you mention. To be clear, I really like the model of riverqueue and will keep going at a leisurely pace since this is a personal time interest at the moment. I’m sick of celery and believe a service is a better model for background tasks than a language-specific tool. If you guys were to build http ingestion and http targets I’d try and deploy it right away. | ||
▲ | bgentry 4 hours ago | parent [-] | |
Ah, so that issue is specifically related to a statistics/count query used by the UI and not by River itself. I think it's something we'll build a more efficient solution for in the future because counting large quantities of records in Postgres tends to be slow no matter what, but hopefully it won't get in the way of regular usage. > Perceived only at this stage, though the kind of volume we’re looking at is 10s to 100s of millions of jobs per day. Yeah that's a little over 100 jobs/sec sustained :) Shouldn't be much of an issue on appropriate hardware and with a little tuning, in particular to keep your jobs table from growing to more than a few million rows and to vacuum frequently. Definitely hit us up if you try it and start having any trouble! |