▲ | SideQuark 16 hours ago | |||||||
The problem with the UTM argument designed for a specific string is that the UTM size grows without bound. You also don’t need a UTM, which will be much larger than a simple TM or finite automaton. And now we’re back to the original problem: designing a machine capable of compressing the specific string and with smaller description. UTM provides no gain. | ||||||||
▲ | Xcelerate 13 hours ago | parent [-] | |||||||
You cannot specify the “size” of an arbitrary Turing machine without knowing the index of that machine in some encoding scheme. If we are to account for the possibility of any string being selected as the one to compress, and if we wish to consider all possible algorithmic ways to do this, then the encoding scheme necessarily corresponds to that of a universal Turing machine. It’s a moot point anyway as most programming languages are capable of universal computation. Again, I’m not claiming we can compress random data. I’m claiming we can (sometimes) make it look like we can compress random data by selecting a specific programming language from one of many possibilities. This selection itself constitutes the “missing” information. | ||||||||
|