Remix.run Logo
andy12_ a day ago

This is an oversimplification of what Titans does. The model performs nested learned, where the model learns during inference, and during training the model weights learn _how and what_ to learn during inference. If the input contains junk of irrelevant information, the model most likely learned during training to assign low surprise query and key embeddings to those tokens, because learning those junk tokens would have hurt the overall ability of the model to predict subsequent next tokens (and thus, it would have had increased the training loss).